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1. Introduction

Black holes with zero temperature are of considerable interest since one has a good chance

of understanding the microscopic origin of their physical properties, such as their entropy.

Asymptotically flat supersymmetric black holes fall in this class of solutions, and there

has been considerable progress in understanding their properties in string theory since the

pioneering work of Strominger and Vafa [1]. Non-supersymmetric extremal black holes with
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zero temperature are likewise of interest. Recent progress on understanding the microscopic

nature of non-supersymmetric zero temperature black holes includes [2 – 8].

Non-supersymmetric black hole solutions are in general more difficult to work with, not

just in terms of understanding their microscopics, but also because they are typically not

easy to come by: exact solutions for non-supersymmetric black holes tend to be harder to

construct than their supersymmetric cousins. This is in particular true for multi-centered

solutions. With their harmonic functions, supersymmetric black holes can easily be su-

perimposed, but non-supersymmetric systems can exhibit strong interactions between the

individual black hole components, and the solutions are consequently more involved.

Application of integrability methods in higher-dimensional gravity has recently allowed

progress on construction of new exact black hole vacuum solutions. For instance, the in-

verse scattering technique was used in the construction of the first asymptotically flat

multi-black hole vacuum solution [9]. The solution — named “black saturn” for its char-

acteristic appearance, a black ring balanced by rotation around a spherical black hole —

exhibited clear signs of interactions, including gravitational frame-dragging. Other novel

properties included a large degree of continuous non-uniqueness even for zero total an-

gular momentum [9, 10]. The black saturn system, as constructed in [9], did not have a

zero temperature limit. However, based on the results found in this paper, we propose

the existence of an extremal zero-temperature black saturn solution, and we discuss the

consequences of its expected continuous non-uniqueness for the phase diagram of extremal

zero-temperature vacuum black holes.

In this paper we study two different 4+1-dimensional black hole systems with spin in

the two independent planes of rotation, and we pay attention particularly to limits that

give extremal zero temperature black hole configurations.

The first of these systems is a new vacuum solution which we call “bicycling black

rings”, or simply “bi-rings” for short. It is a balanced configuration of two singly spinning

concentric black rings placed in orthogonal planes. Singly spinning means that they each

carry “intrinsic” angular momentum only in the plane of the ring, i.e. spin along the S1

direction of the horizon. One can think of the system as the superposition of two of the

original black rings of [11] in orthogonal planes. This is sketched in figure 1. Note that

the bi-ring solution is different from the so-called “di-ring” solutions [12, 13] where the two

concentric rings lie in the same plane.

The bi-ring solution has three commuting Killing vectors (“U(1)3 symmetry”): it is

stationary, and the isometry of the S1 of one ring is the isometry of the azimuthal angle

of the S2 of the other ring, and vice versa. We construct the solution using the inverse

scattering method. The bi-ring solution exhibits 1-fold continuous non-uniqueness after

balance conditions have been imposed. This freedom corresponds to distributing the total

mass between the two black rings.

The two black rings in the bi-ring system interact with each other. The rotation of

the S1 of one ring affects the S2 of the other by gravitational frame-dragging. This causes

the S2 to rotate, so each ring has two non-vanishing angular velocities corresponding to

rotation in the two independent planes. The angular momentum of the S2 is effectively

bounded by the 3+1-dimensional Kerr bound. The solution has a zero temperature limit,
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Figure 1: Bicycling black rings in orthogonal planes.

and in order to understand what happens in this limit we study in detail another solution,

namely the doubly spinning black ring.

The doubly spinning black ring solution had long been anticipated. It is a single black

ring balanced by angular momentum in the plane of the ring, but with angular momen-

tum also in the orthogonal plane, corresponding to rotation of the two-sphere. Kudoh [17]

found branches of this solution numerically, but the true breakthrough1 was Pomeransky

and Sen’kov’s construction of the exact doubly spinning black ring solution [18]. They

used a clever implementation of the inverse scattering method, and moreover presented the

solution in the more intuitive ring-type coordinates [19] rather than axisymmetric coordi-

nates which are natural for the solution generating technique. A more general unbalanced

doubly spinning black ring solution has also been found [20].

We provide in this paper a detailed analysis of the physical properties of the

Pomeransky-Sen’kov doubly spinning black ring [18]. These results have not previously

been presented in the literature. Our results include the structure of the phases of doubly

spinning black rings. We examine two different extremal zero-temperature limits. One

is shown to result in a regular extremely spinning zero temperature black ring solution.

The other limit appears to be singular, but this is just a coordinate singularity. A coordi-

nate transformation shows that the resulting solution is nothing but the extremal doubly

spinning Myers-Perry black hole, which is a regular black hole with zero temperature.

The zero-temperature limit of the bicycling black ring system is similar to the second

extremal limit of the doubly spinning black ring, and thus we find evidence that the rings

in this limit collapse to the extremal Myers-Perry black hole.

Inspired by the analysis of the bi-ring system and the doubly spinning black ring, we

speculate about the structure of the phase diagram for zero-temperature black holes. It

should be emphasized that our bi-ring solution is not the most general one. The obvious

generalization is constructed from two doubly spinning black rings in orthogonal planes.

In our discussion of the general phase diagram we consider the possibilities of generalized

bicycling black rings as well as their even more exotic generalizations, which include multi-

1The unbalanced solution describing a black ring with rotation on the S2 had been constructed by the

inverse scattering method [14, 15], and also independently, in a simpler form, in [16].
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bicycles (tandems) and bi-ring saturns. The richness of the phase structure of higher-

dimensional black holes is striking, even in a limit as specialized as that of zero-temperature.

Supersymmetric versions of saturns, di-rings, bi-rings and many-ring systems can be

constructed via superposition of the harmonic functions that characterize the individual

black hole components of the system. This was first done for rings in [21]. Supersymmetric

saturns with the black hole moved off the plane of the ring were studied in [22]. A key

point in our analysis of the non-supersymmetric multi-black hole solutions is to track the

interaction between the black holes in the system; this is not possible in the supersymmetric

configurations where the mutual BPS-ness cancels out interaction effects.

The organization of the paper is as follows. We construct and analyze the bi-ring

solution in section 2. In section 3 we study in detail a subfamily of the solutions where the

two orthogonal rings are identical. We compare the results with a simple model obtained

by superimposing two singly-spinning black rings and neglecting interactions. The doubly

spinning black ring of [18] is analyzed in detail, and its physics discussed, in section 4. We

describe in section 5 the zero temperature scaling limit of the bi-ring solution and argue that

it corresponds to a collapse to a single extremal Myers-Perry black hole. We conclude with

a discussion of zero temperature phases of 4+1-dimensional black holes in section 6. Two

appendices are included: appendix A contains details of the horizon metric for the bi-ring

solution, and appendix B reviews relevant properties of the Myers-Perry black hole [23].

Note: while this work was in progress, the paper [24] appeared, presenting also an

orthogonal two-ring solution.

2. Bicycling black rings: construction and analysis

2.1 Construction

The inverse scattering method was recently used to construct the black saturn solution [9].

Our approach here is very similar, so we keep the presentation brief. The construction

takes as input a seed solution on which we perform a series of “soliton transformations” and

rescalings [25]. The transformations introduce new parameters, called Belinsky-Zakharov

(BZ) parameters, which are organized in “BZ vectors”. For definitions and review of the

method, see [9]. We also refer the reader to [26 – 28] for literature on the inverse scattering

technique and to [29] and [30] for Weyl solution techniques and rod diagram representations.

2.1.1 Seed solution

The seed solution is represented by the rod diagram given in figure 2. There are two negative

density rods: one [a1, a2] in the ψ-direction and the other [a6, a7] in the φ-direction. These

are included to facilitate adding angular momentum to each of the two black rings [9].

The corresponding seed metric is given by

ds2 = (G0)ab dx
adxb + e2ν0

(

dρ2 + dz2
)

(2.1)
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Figure 2: Rod configuration representing the sources for the seed metric G0. Solid black lines

in the figure correspond to rod sources of uniform density +1/2 and the dashed rods to uniform

densities −1/2.

where xa = (t, φ, ψ) and2

G0 = diag

{

−µ1 µ5

µ3 µ7
,
ρ2 µ3 µ7

µ2 µ4 µ6
,
µ2 µ4 µ6

µ1 µ5

}

, (2.2)

e2ν0 =
µ2µ4µ6

µ1µ5

(

∏

1≤i<j≤7 Zij

)

[

Z15Z26Z37Z24Z46

]3 (

∏7
i=1 Zii

)

. (2.3)

We use

µi =
√

ρ2 + (z − ai)2 − (z − ai) , (2.4)

where the ai are the rod endpoints, and we have introduced

Zij = ρ2 + µiµj . (2.5)

Note that detG0 = −ρ2.

We assume the ordering

a1 < a2 < a3 < a4 < a5 < a6 < a7 (2.6)

of the rod endpoints. When a6 = a7 and a4 = a5 the solution reduces to the seed solution

used to construct black saturn. With its naked singularities (due to the negative density

rods) the seed solution is not by itself of physical interest. As shown in [9], the soliton

transformations which add angular momentum to the solution also make it possible to fully

eliminate the naked singularities.

2.1.2 The 2-soliton transformation

We construct the bicycling black ring solution as follows (see [9] for details):

1. Perform the following two 1-soliton transformations on the seed solution (2.2):

• Remove an anti-soliton at z = a1 with trivial BZ vector (1,0,0); this is equivalent

to dividing (G0)tt by −ρ2/µ̄2
1 = −µ2

1/ρ
2.

2An integration constant in e2ν0 is set to one in order to make the final solution asymptotically flat.
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• Remove a soliton at z = a7 with trivial BZ vector (1,0,0); this is equivalent to

dividing (G0)tt by
(

−ρ2/µ2
7

)

.

The result is the metric matrix

G′
0 = diag

{

−µ5 µ7

µ1 µ3
,
ρ2 µ3 µ7

µ2 µ4 µ6
,
µ2 µ4 µ6

µ1 µ5

}

. (2.7)

2. Rescale G′
0 by a factor of −µ1

µ7
to find

G̃0 = −µ1

µ7
G′

0 = diag

{

µ5

µ3
,
µ1 µ̄2 µ3

µ4 µ6
, −µ2 µ4 µ6

µ5 µ7

}

, (2.8)

where µ̄2 = −ρ2/µ2. This will be the seed for the next soliton transformation.

3. The generating matrix can be found from G̃0. It is

Ψ̃0(λ, ρ, z)=diag

{

(µ5−λ)

(µ3−λ)
,
(µ1−λ)(µ̄2−λ)(µ3−λ)

(µ4−λ)(µ6−λ)
,−(µ2−λ)(µ4−λ)(µ6−λ)

(µ5−λ)(µ7−λ)

}

.(2.9)

Note Ψ̃(0, ρ, z) = G̃0.

4. Perform now a 2-soliton transformation with G̃0 as seed:

• Add an anti-soliton at z = a1 (pole at λ = µ̄1) with BZ vector m
(1)
0 = (1, 0, c1),

and

• Add a soliton at z = a7 (pole at λ = µ7) with BZ vector m
(2)
0 = (1, b2, 0).

Denote the resulting metric G̃. The constants c1 and b2 are the BZ parameters of

the transformation.

5. Rescale G̃ to find

G = −µ7

µ1
G̃ . (2.10)

This is needed to undo the rescaling of step 2, so that detG = −ρ2.

6. The metric factor e2ν is constructed using eq. (2.14) of [9].

The result (G, e2ν) is the final solution.

2.1.3 Solution

The bicycling black ring solution can be written as

ds2 = −Hy

Hx

[

dt− ωφ
Hy

dφ− ωψ
Hy

dψ

]2

+H−1
y

[

Gxdφ
2+Gydψ

2−2Jxydφdψ
]

+PHx

[

dρ2+dz2
]

.

We have written e2ν = P Hx. The metric is given in terms of the functions:

P =
µ2 Z23 Z25 Z34 Z35 Z36 Z45 Z47 Z56 Z57 Z67

µ1 µ
4
5 µ7 (µ3−µ7)4 Z12 Z13 Z14 Z

2
15 Z16 Z17 Z

2
24 Z

2
26 Z27 Z

2
37 Z

2
46

[

∏7
i=1 Zii

]

,
, (2.11)
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(the Zij are defined in (2.5)),

Hx =
(

M0 + c21M1 + b22M2 − c21 b
2
2M3

)

, (2.12)

Hy =
µ5

µ3

(

µ1

µ7
M0 − c21

ρ2

µ1 µ7
M1 − b22

µ1 µ7

ρ2
M2 − c21 b

2
2

µ7

µ1
M3

)

, (2.13)

Gx =
µ1 µ5 ρ

2

µ2 µ4 µ6

(

M0 − c21
ρ2

µ2
1

M1 + b22M2 + c21 b
2
2

ρ2

µ2
1

M3

)

, (2.14)

Gy =
µ2 µ4 µ6

µ3 µ7

(

M0 + c21M1 − b22
µ2

7

ρ2
M2 + c21 b

2
2

µ2
7

ρ2
M3

)

, (2.15)

and

Jxy = c1 b2 ρ
2 µ1µ2 µ3 µ4 µ

2
5 µ6 (µ3 − µ7)

2(µ4 − µ7)(µ5 − µ7)(µ6 − µ7)

×Z11 Z77 Z12 Z13 Z14 Z
2
15 Z16 Z17 Z27 , (2.16)

with

M0 = µ4 µ
3
5 µ6 µ7 (µ3 − µ7)

4 Z2
12 Z

2
13 Z

2
14 Z

2
16 Z

2
17 Z

2
27 , (2.17)

M1 = ρ2 µ2
1 µ2 µ3 µ

2
4 µ5 µ

2
6 (µ1 − µ7)

2 (µ3 − µ7)
4 Z4

15 Z
2
17 Z

2
27 , (2.18)

M2 = ρ4 µ1 µ2 µ
2
3 µ

2
5 µ7 (µ4 − µ7)

2 (µ5 − µ7)
2 (µ6 − µ7)

2 Z2
12 Z

2
13 Z

2
14 Z

2
16 , (2.19)

M3 = ρ4 µ3
1 µ

2
2 µ

3
3 µ4 µ6 (µ4 − µ7)

2 (µ5 − µ7)
2 (µ6 − µ7)

2 Z4
15 Z

2
17 . (2.20)

Finally we also have

ωψ = c1
Z11

µ1

√

µ2 µ4 µ6

µ3 µ7 ρ2

(

√

M0M1 + b22
µ7

ρ

√

M2M3

)

, (2.21)

ωφ = b2
Z77

µ7

√

µ1 µ5

µ2 µ4 µ6

(

√

M0M2 + c21
ρ

µ1

√

M1M3

)

. (2.22)

Note that changing the sign of the BZ parameter c1, c1 → −c1 is equivalent to reversing

the direction of rotation by taking ψ → −ψ. Likewise, b2 → −b2 simply corresponds to

taking φ → −φ. Thus we choose c1 and b2 to be negative without loss of generality. This

choice gives positive angular momenta and angular velocities.

2.2 Analysis

2.2.1 Parameterization

The solution is parameterized by the rod endpoints ai and the two BZ parameters c1 and

b2. The parameters are all dimensionful. It is convenient to introduce an overall scale L,

L2 = a7 − a1 , (2.23)

and then express the solution in terms of dimensionless parameters κi defined as

κi =
ai+1 − a1

L2
(2.24)
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for i = 1, 2, . . . , 5. The ordering (2.6) implies that

0 ≤ κ1 ≤ κ2 ≤ κ3 ≤ κ4 ≤ κ5 ≤ 1 . (2.25)

It is also useful to shift the z coordinate as

z = L2z̄ + a1 , (2.26)

so that z̄ is dimensionless.

An analysis of the metric components Gab, a, b = t, ψ, φ, near the rod endpoints shows

that there are divergences near z̄ = 0 and z̄ = 1, i.e. near z = a1 and z = a7. Just as for

the black saturn solution, these singularities can be eliminated by an appropriate choice of

the BZ parameters. This fixes c1 and b2 to be3

c1 = −L
√

2 κ1 κ2 κ3 κ5

κ4
, b2 = −L(1 − κ2)

√

2(1 − κ1)

(1 − κ3)(1 − κ4)(1 − κ5)
. (2.27)

In what follows we will always impose the smoothness conditions (2.27). The ρ = 0

metric is then smooth across z̄ = 0 and z̄ = 1, and there are no signs of the negative

density rods of the seed solution. We describe the rod configuration of the bicycling black

ring solution in the next subsection.

With c1 and b2 fixed by (2.27), the full solution is parametrized by the five κi-

parameters, subject to the ordering (2.25), and the scale L.

2.2.2 Rod structure

Imposing (2.27) the rod structure can be summarized as (see figure 3):

• The semi-infinite rod ] −∞, κ1] and the finite rod [κ2, κ3] have direction (0, 1, 0).

• The semi-infinite rod [κ5,∞[ and the finite rod [κ3, κ4] have direction (0, 0, 1).

• The finite rod [κ1, κ2] corresponds to a black ring whose horizon has the S1 parame-

terized by ψ and the S2 by (z, φ). This rod has direction (1,Ω
(1)
φ ,Ω

(1)
ψ ).

Likewise, the finite rod [κ4, κ5] corresponds to a black ring whose horizon has the S1

parameterized by φ and the S2 by (z, ψ). This rod has direction (1,Ω
(2)
φ ,Ω

(2)
ψ ).

The angular velocities are

Ω
(1)
φ =

1

L (1 − κ2)

√

(1 − κ3)(1 − κ4)(1 − κ5)

2 (1 − κ1)
, Ω

(1)
ψ =

κ4

L

√

κ1

2κ2 κ3 κ5
, (2.28)

Ω
(2)
φ =

1 − κ2

L

√

(1 − κ5)

2 (1 − κ1)(1 − κ3)(1 − κ4)
, Ω

(2)
ψ =

1

Lκ4

√

κ1 κ2 κ3

2κ5
. (2.29)

We use superscripts (i), i = 1, 2, for the quantities associated with ring 1 (horizon located

at ρ = 0 and κ1 ≤ z ≤ κ2) and ring 2 (horizon at ρ = 0 and κ4 ≤ z ≤ κ5).

3Changing the sign of the BZ parameters corresponds to reversing the sense of rotating of the rings, so

without loss of generality we have assumed c1 and b2 to be negative.
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Figure 3: Rod structure of the regular bicycling black ring solution. Rod directions are shown

over each rod.

Exchange symmetry. The rod picture figure 3 suggests that the solution has a sym-

metry corresponding to interchanging the two black rings. Indeed we have confirmed that

the transformation

κ1 → 1 − κ5 , κ2 → 1 − κ4 , κ3 → 1 − κ3 , κ4 → 1 − κ2 , κ5 → 1 − κ1 ,

z̄ → 1 − z̄ , ψ ↔ φ ,

exchanges the physical parameters of the two black rings, as well as their balance condi-

tions.4

2.2.3 Asymptotics and balance

The solution (2.11) is asymptotically flat. To see this, introduce asymptotic coordinates

(r, θ) as ρ = 1
2 r

2 sin 2θ and z = 1
2 r

2 cos 2θ. In the asymptotic limit r → ∞, the metric

then approaches

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dψ2 + cos2 θ dφ2) . (2.30)

Regularity conditions5 require the angular coordinates φ and ψ have periods 2π,

∆φ = 2π , ∆ψ = 2π , (2.31)

so indeed the metric is asymptotically flat.

Regularity on the rods [κ2, κ3] and [κ3, κ4] requires non-trivial conditions,

1 =
∆φ

2π
=

√

κ3κ5(1 − κ1)(κ3 − κ2)(κ4 − κ1)(κ4 − κ2)(κ5 − κ2)

κ4(1 − κ2)(κ3 − κ1)(κ5 − κ1)
, (2.32)

1 =
∆ψ

2π
=

√

κ5(1 − κ1)(1 − κ3)(κ4 − κ1)(κ4 − κ3)(κ4 − κ2)(κ5 − κ2)

κ4(1 − κ2)(κ5 − κ1)(κ5 − κ3)
. (2.33)

These are the conditions for balancing each of the two black rings. If not imposed, then

there are disks of conical singularities inside the rings. When studying the physical prop-

erties of the bicycling ring system, we always impose both balance conditions.

4This is only true when the conditions (2.27) are imposed; if not imposed, one must in addition transform

c1 and b2.
5The periodicities (2.31) follow from regularity conditions on the rods ]−∞, κ1] and [κ5,∞[. The general

regularity condition is that when Gφφ → 0 as ρ→ 0 then ∆φ = 2π limρ→0

q

ρ2 Gρρ

Gφφ
. Likewise for ψ.

– 9 –
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Solving the balance conditions. We briefly outline the strategy for solving the balance

conditions in practical applications. This is used in section 5. The squared ratio of (2.32)

and (2.33) is

1 =
κ3 (κ3 − κ2)(κ5 − κ3)

2

(1 − κ3)(κ4 − κ3)(κ3 − κ1)2
. (2.34)

This condition is linear in κ2 and κ4; solving for κ4 gives

κ4 = κ∗4 ≡ κ3 +
κ3(κ3 − κ2)(κ5 − κ3)

2

(1 − κ3)(κ3 − κ1)2
. (2.35)

Clearly κ3 ≤ κ∗4, but we must also require that κ∗4 ≤ κ5, and that restricts the parameters

on the r.h.s. of (2.35). The simplest way to express this is as an upper bound on κ5,

κ5 ≤ κ5MAX(κ1, κ2, κ3) ≡
κ2

1 (1 − κ3) − 2κ1 κ3 (1 − κ3) + κ2
3 (1 − κ2)

κ3 (κ3 − κ2)
. (2.36)

This condition ensures κ3 ≤ κ∗4 ≤ κ5.

Plugging (2.35) into either of the balance conditions (2.32) or (2.33) we obtain a

polynomial equation which is 8th order in κ1, 4th order in κ2, 7th order in κ3, and 6th

order in κ5. Solving this condition for κ2 seems to be the simplest. As a fourth order

polynomial, one can obtain the roots analytically, but in applications we will simply solve

numerically for κ2 in order to impose balance. For given κ1, κ3, and κ5, we select the real

root(s) κ∗2 which satisfy (a) κ1 < κ∗2 < κ3, and (b) κ5 ≤ κ5MAX(κ1, κ
∗
2, κ3).

Imposing both balance conditions leaves the bi-ring solution with three dimensionless

parameters 0 < κ1 < κ3 < κ5 < 1 and the scale L. Fixing the total ADM mass fixes the

scale. Fixing further the only other conserved quantities, namely the two angular momenta,

leaves a single free parameter. This continuous non-uniqueness parameter corresponds to

the freedom of distributing the total mass between the two black rings.

2.2.4 Physical parameters

The ADM mass and angular momenta are

M =
3π L2

4G5
(1 + κ2 − κ4) , (2.37)

Jψ =
π L3

√
2G5

√
κ1 κ2 κ3 κ5

κ4
, (2.38)

Jφ =
π L3

√
2G5

√

(1 − κ1)(1 − κ3)(1 − κ4)(1 − κ5)

(1 − κ2)
. (2.39)

The mass is always positive.

We analyze the black ring horizons in appendix A. The horizon area and temperature

of each black ring are found to be

A
(1)
H = (2π)2 L3 (κ2 − κ1)

√

2κ2 κ3 κ5 (1 − κ1)(κ2 − κ1)(κ4 − κ1)

κ4 (κ3 − κ1)(κ5 − κ1)
, (2.40)

A
(2)
H = (2π)2 L3 (κ5 − κ4)

√

2κ5 (1 − κ1)(1 − κ3)(1 − κ4)(κ5 − κ4)(κ5 − κ2)

(1 − κ2)(κ5 − κ1)(κ5 − κ3)
, (2.41)
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and

T
(1)
H =

κ4 (κ3 − κ1)(κ5 − κ1)

2πL
√

2κ2 κ3 κ5 (1 − κ1)(κ2 − κ1)(κ4 − κ1)
, (2.42)

T
(2)
H =

(1 − κ2)(κ5 − κ1)(κ5 − κ3)

2πL
√

2κ5 (1 − κ1)(1 − κ3)(1 − κ4)(κ5 − κ2)(κ5 − κ4)
. (2.43)

Smarr relations. The bicycling rings satisfy the Smarr relation

2

3
M = T1S1 + T2S2 + Ω

(1)
ψ Jψ + Ω

(2)
φ Jφ , (2.44)

where S(i) = A
(i)
H /(4G). This holds independently of the balance conditions.

Komar integrals for the masses and angular momenta give

M (1) =
3πL2

4G
κ2 , M (2) =

3πL2

4G
(1 − κ4) . (2.45)

and

J
(1)
ψ = Jψ , J

(1)
φ = 0 , J

(2)
φ = Jφ , J

(2)
ψ = 0 . (2.46)

The Komar masses and angular momenta add up to the total ADM mass and ADM angular

momenta, and they satisfy M (i) = 3
2

(

T
(i)
H S(i) + Ω

(i)
ψ J

(i)
ψ

)

. This holds independently of the

balance conditions, and should merely be viewed as a calculational check (see [10]) of our

results for the physical parameters.

2.2.5 CTCs

It can analytically be shown that there are no closed timelike curves (CTCs) in the plane

inside each rings. Outside the ring, in the plane of the ring, we have checked numerically

near the ring and found no CTCs. We have also performed numerical checks in the bulk

(off the planes of the rings), and no CTCs where found. Our checks are not exhaustive, and

further progress may require a better coordinate system. We do not expect the solution

to have naked CTCs, in particular we note that typical signs of CTCs are absent here, for

instance the horizon area remains positive and well-defined for all admissible parameters.

3. Symmetric bicycles

Our bi-ring solution is described by a single scale and five dimensionless parameters, sub-

ject to two balance conditions. Thus for fixed ADM mass, there are three independent

parameters for the balanced system. Asymptotically, the total angular momenta in the

two planes fix two of these parameters. Thus the balanced bi-rings have 1-fold continu-

ous non-uniqueness. This freedom corresponds to continuously distributing the total mass

between the two black rings.

A particularly simple subclass of bi-ring solutions is obtained by requiring that the

two black rings are identical; i.e. that they have the same temperatures, the same areas,

and the same S1 and S2 angular velocities. We study this class of solutions in this section.

Please note that in this paper we do not review properties of singly spinning black rings

and their thin and fat ring branches in the phase diagram. This has by now been explained

in much detail in several papers. We refer in particular to [31] and the review [19].
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ν = 0.3 ν = 0.5 ν = 0.9

ν = 0.96 ν = 0.99 ν = 0.995

Figure 4: Visualization of the symmetric bicycling black ring system. Shown is the superposition

of two identical singly spinning rings in orthogonal planes for six different values of the angular

momentum jψ = jφ =
√

(1 + ν)3/(8ν) (recall [10] that 0 < ν < 1/2 for the thin ring branch and

1/2 < ν < 1 on the fat black ring branch). The total mass is fixed to be the same for each plot.

The embeddings are plotted on the same scale. Interactions between the two rings are ignored in

this model, but in the real bi-ring solution interactions play an important role.

3.1 A model

Before examining in detail the symmetric bi-ring configuration, it is useful to first model

the system by superimposing two singly spinning rings in orthogonal planes. This of course

ignores the interactions between the two rings, the significance of which we soon discover.

A similar model for black saturn was studied in [10].

The first purpose of the model is to illustrate the geometry of the 2-ring configuration.

This is done for six different values of the angular momentum in figure 4. In each case

we have plotted, for two identical copies of singly spinning black ring, the isometric em-

beddings of the diametrical cross section of the ring S2’s, separated by the inner horizon

radius. These quantities, as well as further details on black ring geometry and isometric

embeddings, can be found in [31].

Black rings on the thin ring branch have two-spheres which are nearly spherical and

largely separated. As the angular momentum decreases so does the inner horizon radius,

and the S2 of the horizon deforms as shown in figure 4. For the singly spinning black ring,

the inner radius can become arbitrarily small, and as it goes to zero the solution becomes

nakedly singular. In the model the inner horizon radius can also take arbitrarily small

values, but this of course ignores interactions between the two rings.

The second purpose of the 2-ring model is to examine what we may encounter in the
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real bi-ring system. We introduce the usual fixed mass dimensionless variables

j2 =
27π

32G

J2

M3
, aH =

3

16

√

3

π

AH

(GM)3/2
(3.1)

for angular momentum and horizon area. In order to balance itself against collapse, a

singly spinning black ring must carry a certain amount of angular momentum for the given

mass. This gives a lower bound on j, namely 27/32 ≤ j2. At j2 = 27/32, the ring has

maximum horizon area, aH = 1. The singly spinning ring can rotate with arbitrarily high

angular momentum, and as it does so the area goes to zero as aH ∼ (
√

2 j)−1 for j → ∞.

We normalize the physical parameters for the bi-rings in terms of the total mass. For

the symmetric configuration, this is 2M , with M the mass of each ring. The total area is

2AH. In the limit where the rings are large and thin, they have little interaction and we

expect the model to describe the system well. Using (3.1) with 2M as the total mass we

find that for the symmetric bi-ring model, the total horizon area goes as atotal
H ∼ (4

√
2 j)−1

for large j. This behavior is verified for the bi-ring solution in the next subsection.

Ignoring interactions we likewise estimate the bi-ring to have maximal area amax
H =

2/23/2 = 1/
√

2 ≈ 0.7 and minimum angular momentum j2min = 1/23(27/32) ≈ 0.11. We

show below that the actual values are amax
H ≈ 0.485 and j2min ≈ 0.246 for the bi-ring

solution. This indicates that interaction effects are important for black rings near the cusp

where the rings in the bi-ring system are closer to each other.

A clear sign of interactions in the true bi-ring configuration is that the rotation of the S1

of one ring drags the S2 of the other ring into rotation. We study this in the next subsection.

3.2 The symmetric bi-ring phase

In the symmetric bi-ring configuration the two rings are identical: they have the same

area and temperature, and the magnitudes of the angular momenta in the two planes

of rotation are the same. It is easily verified that this is obtained from a symmetric rod

configuration with

κ5 = 1 − κ1 , κ4 = 1 − κ2 , κ3 =
1

2
. (3.2)

The two balance conditions (2.32)-(2.33) are also identical, and an equilibrium config-

uration is is therefore obtained by imposing a single condition,

1 =
(1 − κ1)(1 − κ1 − κ2)(1 − 2κ2)

(1 − κ2)2(1 − 2κ1)2
. (3.3)

The parameters must satisfy

0 < κ1 < κ2 <
1

2
, (3.4)

and this selects one solution κ∗2 to the balance condition (3.3):

κ∗2 =
1 + 3κ1 − 6κ2

1 − (1 − 2κ1)
√

1 + 2κ1 − 3κ2
1

2(1 + 2κ1 − 4κ2
1)

. (3.5)
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atotal

H

2
√

2

2

1

j2
1

4

0

MP BH

sym bi-ring

ω

rinner

1

0.5

rm 1 1.5

ωS1

ωS2

Figure (a) Figure (b)

Figure 5: (a) Area aH vs. j2 for solutions with equal angular momenta in the two planes of

rotation, j ≡ jψ = jφ. The gray curve shows the Myers-Perry black hole phase and the black curve

is the symmetric bi-ring configuration. Both curves have endpoints at j2 = 1/4. The solutions at

the endpoints have finite area and zero temperature. (b) Angular velocities vs. inner horizon radius

rinner. The solid (dashed) curves corresponds to the angular velocity of the S2 (S1) of the horizon.

The minimum inner radius is rm ≈ 0.95.

Thus the balanced symmetric bi-ring system is parameterized by a single parameter,

κ1. This is equivalent to a single balanced black ring which is parameterized by a single

parameter.

Figure 5(a) shows the dimensionless area aH vs. the angular momentum j2 (as intro-

duced in (3.1)) for the symmetric bi-ring system (black curve). As suggested by the model

in the previous section, the angular momentum j of the symmetric bi-ring system is un-

bounded from above. When κ1 → 0, j → ∞ and the area goes to zero as aH ∼ (4
√

2 j)−1,

in exact agreement with the non-interacting model of the previous subsection. In this limit

the model gives a good description of the system, since the rings are long and thin, hence

far apart and with negligible interactions.

Just like the singly spinning black ring, there are two branches, a thin and a fat ring

branch, and they meet at a cusp, where the area reaches its maximum and the angular

momentum its minimum. At the cusp6 the angular momentum and area take values j2min ≈
0.246 and aHmax ≈ 0.485. The naive estimates of the non-interacting model in the previous

subsection are different from the actual bi-ring results. We ascribe this to interactions

between the two rings.

Each ring carries angular momentum in the plane of its S1, and it does not have

intrinsic angular momentum on the S2 (the Komar angular momentum integral for the

S2 rotation vanishes). The 2-spheres are nonetheless rotating; they have non-vanishing

angular velocity due to the interaction between the two rings. Through rotational frame-

dragging, the S1 rotation J
(1)
ψ of ring 1 drags the S2 of ring 2 to rotate with angular

velocity Ω
(2)
ψ . Ring 2 of course acts symmetrically on ring 1. Claiming that the effect is

gravitational frame-dragging is of course an interpretation of the physical properties of the

6The cusp is located at κ1 = 1
6

“

1 − 24/3
`

5 +
√

57
´−1/3

+ 2−1/3
`

5 +
√

57
´1/3

”

≈ 0.293.
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solution, but it is very natural. The interpretation of similar dragging effects was tested in

detail for the black saturn solution [9].

Figure 5(b) shows the S1 angular velocity ω
(1)
ψ for ring 1 and the S2 angular velocity

ω
(2)
ψ for ring 2 plotted vs. the inner horizon radius rinner of ring 1. (This is done for the

symmetric bi-ring configuration, so there is really no distinction between parameters for

ring 1 and ring 2.) The dimensionless angular velocity is defined as

ωi =

√

8

3π
Ωi (GM)1/2 . (3.6)

The inner horizon radius is the S1 radius on the inside rim of the ring. Normalized by the

total mass it is

rinner = (GM)−1/2
√

Gψψ |ρ=0,z̄=κ2 =

√

2(1 − κ1 − κ2)

3π(κ2 − κ1)
. (3.7)

The inner radius rinner decreases monotonically along the symmetric ring branch in fig-

ure 5(a). As j → ∞, rinner → ∞.

We use the inner horizon radius as a rough estimate of the spatial separation between

the two black rings. As shown in figure 5(b) the S1 angular velocity ωS1 increases mono-

totically as the ring shrinks. As rinner decreases, the S2 spins faster and faster, reaching

a maximum at j2 = 1/4, where ωS2 = ωS1 = 1. Oppositely, as the separation between

the ring becomes large, rinner → ∞ (j → ∞), one finds that ωS2 → 0. We also note that

ωS2 < ωS1. These observations are consistent with the interpretation that the S2 spin is

due to gravitational frame-dragging.

In figure 5(a) we also display the only other currently known vacuum black hole solution

in 4+1 dimensions with equal magnitude angular momenta in the two planes of rotation:

the Myers-Perry black hole with Jψ = Jφ (gray curve in figure 5(a)). A few relevant

properties of the Myers-Perry black hole are reviewed in appendix B. At j = 0 this is just

the 4+1-dimensional Schwarzschild black hole whose area is aH = 2
√

2. As j increases, the

area decreases, and the curve ends at finite area.7 The endpoint solution is a maximally

rotating extremal zero temperature black hole with j2 ≡ j2φ = j2ψ = 1/4 and aH =
√

2.

The symmetric bi-ring branch in figure 5(a) also has an endpoint at j2 ≡ j2φ = j2ψ = 1/4,

and indeed in this limit,8 the temperature goes to zero. It is tempting to interpret the end-

point of the symmetric bi-ring branch as an extremal zero temperature bi-ring configura-

tion. However, examining a similar limit of the doubly spinning black ring in the next sec-

tion, we are instead lead to the conclusion that the j2 → 1/4 limit of the symmetric bi-ring

corresponds to a collapse of the rings to the symmetric zero temperature Myers-Perry black

7Contrary to the singly spinning Myers-Perry black hole which ends at j = 1 and aH = 0, where it is

singular.
8The limit is κ1 → 1/2, corresponding to a collapse of all the finite length rods in the phase diagram.

Due to the balance condition, this particular scaling limit results in a non-trivial solution. The extremal

limits of the Kerr black hole and the 4+1d Myers-Perry black hole also correspond to a controlled collapses

of the horizon rods. This seems to be a general feature of zero temperature black holes.
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hole. In such a collapse, the horizon area will change discontinuously. Thus the j2 = 1/4

endpoint of the symmetric bi-ring curve in figure 5(a) is not part of the bi-ring phase.

Naturally one expects the existence of more general bi-ring systems in which each

ring carries intrinsic angular momentum in both planes of rotation. Such solutions will

extend the class of symmetric bi-rings, and their phases must also be considered for the

full structure of the phase diagram figure 5(a). Placing a black hole at the center of such

a generalized bi-ring system will give rise to an even larger class of solutions, including

symmetric ones. Further discussion of generalizations follows in section 6.

4. Doubly spinning black rings

The solution for the balanced doubly spinning black ring was presented by Pomeransky

and Sen’kov [18]. We provide here an analysis of the doubly spinning ring solution and its

physical properties.

4.1 Analysis

We use the solution9 in the form presented in [18] except that we interchange φ and ψ, so

that φ is the azimuthal angle of the S2 and ψ parameterizes the circle of the ring.

The solution [18] is given in ring coordinates (x, y) with |x| ≤ 1 and y ≤ −1, and is

parametrized by a scale k and two dimensionless parameters λ and ν which are required

to satisfy

0 ≤ ν < 1 , 2
√
ν ≤ λ < 1 + ν . (4.1)

The balanced black ring [11] with rotation only in the plane of the ring is found in the

limit ν → 0. The unbalanced black ring with angular momentum only on the S2 [14 – 16]

cannot be obtained from the Pomeransky-Sen’kov solution because the balance condition

is imposed in the solution presented in [18]. Likewise it is not possible to obtain the full

general 5-dimensional Myers-Perry black hole as a “collapse” limit of the balanced ring

solution. The more general unbalanced doubly spinning black ring metric of Morisawa et

al [20] contains these limits.

Asymptotics. Asymptotic coordinates (ρ, θ) are introduced through the coordinate

transformation

x = −1 + 4k2 α2 1

ρ
cos2 θ , y = −1 − 4k2 α2 1

ρ
sin2 θ , α =

√

1 + ν − λ

1 − λ
. (4.2)

In the ρ→ ∞ limit this brings the metric of [18] to a manifestly flat form with the angular

coordinates φ,ψ and the time coordinate t canonically normalized.

9We have analytically verified that the solution presented in [18] indeed satisfies the Einstein vacuum

equations, Rµν = 0.
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Horizon. The roots of the equation

1 + λ y + ν y2 = 0 (4.3)

determine the locations of the inner and outer horizons; the event horizon is located at

yh =
−λ+

√
λ2 − 4ν

2ν
. (4.4)

The metric has a coordinate singularity at the roots of (4.3) where gyy diverges. Good

coordinates through the event horizon can be constructed by setting ȳ = y − yh and

performing the coordinate transformation

dφ̄ = dφ− A

ȳ
dȳ , dψ̄ = dψ − B

ȳ
dȳ , dt̄ = dt− C

ȳ
dȳ . (4.5)

The constants A, B, and C are determined by eliminating potential divergences in the

metric components in the limit ȳ → 0. In more detail: the constants A, C are fixed

in terms of B (and λ, ν) by requiring the absence of a 1/ȳ divergence in gtȳ. This also

eliminates similar potential divergences in gφȳ and gψȳ. Next B can be chosen such that

the divergences in gȳȳ cancel. In the coordinates (t̄, φ̄, ψ̄, x, ȳ), the metric is then analytic

across ȳ = 0, and y = yh is therefore the location of a regular event horizon. The analysis

is valid for 2ν1/2 < λ < 1 + ν.

An extremal rotating black ring is obtained for λ = 2
√
ν, when the inner and outer

horizons coincide (i.e. the roots of (4.3) coincide). Good coordinates through the horizon

can also be found in this case, but it requires a separate analysis where terms 1/ȳ and 1/ȳ2

are both included in the coordinate transformations (4.5). It was shown in [32] that the

near horizon geometry of the extremal black ring is isometric to the near horizon geometry

of a special case of the boosted Kerr black string.

Physical parameters. The ADM mass and angular momenta are

M =
3π k2

G

λ

1 + ν − λ
, Jφ =

4π k3

G

λ
√

ν
[

(1 + ν)2 − λ2
]

(1 + ν − λ)(1 − ν)2
, (4.6)

Jψ =
2π k3

G

λ (1 + λ− 6ν + ν λ+ ν2)
√

(1 + ν)2 − λ2

(1 + ν − λ)2(1 − ν)2
. (4.7)

The angular velocities are

Ωψ =
1

2k

√

1 + ν − λ

1 + ν + λ
, Ωφ =

λ(1 + ν) − (1 − ν)
√
λ2 − 4ν

4k λ
√
ν

√

1 + ν − λ

1 + ν + λ
, (4.8)

and the horizon area can be written

AH =
32π2k3 λ(1 + ν + λ)

(1 − ν)2(y−1
h − yh)

. (4.9)

The temperature can be found using the Smarr formula 2
3M = THS + JφΩφ + ΩψJψ, with

S = AH/(4G), and the result is

TH =
(y−1
h − yh)(1 − ν)

√
λ2 − 4ν

8π k λ(1 + ν + λ)
. (4.10)
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As expected, TH = 0 for the extremal solution with λ = 2
√
ν.

Examining the ranges of the dimensionless angular momenta (defined in (3.1)) one finds

jφ ≤ 1

4
, jψ ≥ 3

4
, (4.11)

In particular the angular momenta can never be equal, and the ratio jφ/jψ is less than or

equal to 1/3. The dimensionless angular velocities satisfy 0 < ωψ ≤ 1 and 0 ≤ ωφ ≤ 1.

4.2 Phase diagram

We are interested in three main questions: (1) how the S2 angular momentum Jφ changes

the behavior of the spinning black ring, (2) which regions of the phase diagram is covered

by the doubly spinning black rings, and (3) what are the zero temperature extremal limits.

The answers are summarized in the phase diagrams in figure 6. There are several curves

of interest in the phase diagram, and we shall discuss them in turn.

The extremal black ring limit λ → 2ν1/2. The extremal black ring with λ = 2ν1/2 is

regular and has zero temperature. Physically it corresponds to the S2 rotating maximally,

i.e. saturating the Kerr bound. In this limit, the angular momentum jψ and the area aH

can be written directly as functions of jφ:

jψ =
1 + 8j2φ

8jφ
, aH = 2

√
2 jφ . (4.12)

In figure 6 this extremal phase is shown as the solid black curve. It starts at jψ = 3/4,

jφ = 1/4 and aH = 1/
√

2, and the area decreases monotonically to zero as jψ → ∞
(jφ → 0). We conclude that there exists zero temperature black rings for any S1 angular

momentum jψ > 3/4.

In the extremal ring limit, λ = 2
√
ν, the inner and outer horizon radii are the same

r(inner) = r(out). This is similar to the case of supersymmetric black rings [33 – 35, 21].

The second extremal limit ν → 1, λ → 2 is a collapse. A second extremal limit

corresponds to the limit ν → 1. Due to the parameter restrictions (4.1), we have to take

λ → 2 as ν → 1. This must be done in a way that leaves dimensionless parameters finite,

and that requires the ratio

σ =
1 + ν − λ

(1 − ν)2
(4.13)

to be finite in the limit. Solving this equation for λ and taking the limit ν → 1− gives

TH = 0 , jφ = σ , jψ = 1 − σ , aH =
4
√

2σ3/2

1 −
√

1 − 4σ
, ωψ,φ → 1 . (4.14)

The (j2ψ, aH) curve is shown in figure 6 (dashed curve). As we now show, this curve does

not represent a phase of extremal rings.
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Figure 6: Phase diagrams for the doubly-spinning black ring: area vs. the S1 angular mo-

mentum j2ψ . The dark gray curve shows the phase of the singly spinning black ring. The light

gray curves are branches of constant jφ; the particular values shown are (right towards left)

j2φ = 1

500
, 1

100
, 1

50
, 1

35
, 1

25
, 1

18
. As j2φ → 1

16
, its maximum value, the constant-jφ curves degener-

ate to the point j2ψ = 9/16 and aH = 1/
√

2. Each of the light gray constant-jφ curves start at the

zero-temperature branch of doubly spinning black ring solutions, shown as the solid black curve,

and they limit to the black dashed curve (see main text). The black dotted curve outlines the

position of the cusp of the constant-jφ curves; these are characterized by having minimum jψ and

maximum area for given fixed jφ. The plot on the right shows the same set of curves overlaying a

scatter plot (lighest gray — 10,000 points) indicating the range in the phase diagram covered by

doubly spinning black rings. The region is bounded by the curves we have described.

The limit ν → 1, λ→ 2 appears singular, but this is just a coordinate artifact, and the

resulting solution is actually the extremal Myers-Perry black hole with parameters a1, a2

and µ1/2 = a1 + a2. To see this, define

µ =
k2

(1 − ν)2 σ
, a1 = µ1/2(1 − σ) , a2 = µ1/2 σ , (4.15)

and perform the following coordinate transformation

x = −1 +
16
√
a2 k

3 cos2 θ

(a1 + a2)3/2(r2 − a1a2)
, y = −1 − 16

√
a2 k

3 sin2 θ

(a1 + a2)3/2(r2 − a1a2)
. (4.16)

When ν → 1 one finds the metric for the extremal Myers-Perry solution. This limit is very

similar to the Myers-Perry limit of singly spinning black rings, as presented for instance in

appendix A of [3].

In this collapse limit of the ring to an extremal Myers-Perry black hole, the area is

discontinuous, just like in the similar collapse limits of supersymmetric black rings [34]. So

the dashed curve in figure 6 does not itself represent a phase of black rings, but it marks

the endpoint of the fixed-jφ phases which are described below; at the endpoint the ring has

collapsed to the zero temperature Myers-Perry black hole.10

10We had examined the inner and other horizon radii and observed that they remain finite in the limit

ν → 1, λ → 2. This may seem to contradict the collapse of the ring, but one must keep in mind that these

radii are defined by the horizon geometry which is discontinuous in the limit.

– 19 –



J
H
E
P
0
4
(
2
0
0
8
)
0
4
5

Curves of constant S2 angular momentum. The dimensionless angular momentum

on the S2 is given by

j2φ =
ν(1 + ν − λ)2(1 + ν + λ)

2λ(1 − ν)4
. (4.17)

Finding the fixed-jφ curves in the phase diagram can be done by solving jφ = j∗φ for some

fixed value 0 ≤ j∗φ ≤ 1/4. It is a cubic equation in λ which for 0 < ν < 1 and 0 < jφ < 1/4

has three real roots. Two of these roots always violate the constraints (4.1), but the third

root satisfies (4.1) provided ν > νc(j
∗
φ), where νc(j

∗
φ) is some critical value which depends

on the value j∗φ.

Figure 6 shows (in light gray) curves of fixed j2φ = 1
500 ,

1
100 ,

1
50 ,

1
35 ,

1
25 ,

1
18 . For small jφ

the curve is very similar to the singly spinning black ring with jφ = 0, shown in dark gray.

The fixed-jφ curves have two endpoints at non-vanishing area aH. One corresponds to the

limit ν → νc(j
∗
φ) which is equivalent to λ → 2ν1/2; this is the zero temperature extremal

branch (solid black curve). The other endpoint of the fixed-jφ curves is at ν → 1, and as

shown above the ring collapses to an extremal Myers-Perry black hole in this limit.

When jφ < 1/5 the fixed jφ-curves have two branches: a thin and a fat ring branch, just

like the singly spinning black ring. When 1/5 ≤ jφ ≤ 1/4 only the thin ring branch exists.

Curve of cusps. The dotted black curve in figure 6 are the position of the cusp of the

constant jφ curve, where jψ is minimized and the area maximized. The cusp curve is found

by using a Lagrange multiplier to fix jφ while extremizing jψ. This fixes λ in terms of ν as

λ =
1

4

(

− 1 − ν +
√

(9 + ν)(1 + 9ν)
)

. (4.18)

The cusp only exists for sufficiently small jφ, namely jφ < 1/5. The fixed jφ = 1/5 curve

ends at jψ = 4/5 and aH = 2
5

√

3 +
√

5, where the dotted curve of cusps ends on the

dashed curve.

4.3 Physics discussion

One feature of the curves of fixed angular momentum jφ on the S2 is that the S1 angular

momentum cannot be arbitrarily large. This is easily understood. Recall that in the limit of

large jψ, the singly rotating black ring becomes large and thin. Non-zero jφ means that the

S2 part of the ring behaves like a Kerr black hole, in particular it will have to obey the Kerr

bound on the angular momentum. This implies that for given non-vanishing jφ, the size of

the S2 cannot become arbitrarily thin (the effective S2 mass cannot be too small because

that would violate the Kerr bound). This in turn means that one cannot spin up the ring

to arbitrarily large jψ. Hence for given jφ, there is a maximum possible value for jψ. When

jφ is small, the maximum value is large, but decreases as jφ increases, as is seen in figure 6.

Another qualitative feature is the disappearance of the “fat ring branch” as jφ becomes

large. Consider two diagonally opposite 2-spheres of the ring. They both carry jφ angular

momentum which creates an attractive spin-spin interaction [36]. As the (inner) S1 de-

creases, the strength of this spin-spin attraction grows stronger, and it becomes harder to
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balance the ring by angular momentum on the S1. This is what causes the diminishing of

the fat ring branch as jφ increases, and for jφ ≥ 1/5, the fat branch disappears.11

The analysis of [31] suggested that the thin black ring branch solutions are stable to

radial perturbations and the fat rings unstable. This was in concordance with an expected

result [37] that at least one extra mode of instability appeared when going across the cusp

from the thin black ring branch to the fat black ring branch. Extrapolating these results,

doubly spinning rings with large enough S2 angular momentum, jφ ≥ 1/5, may be expected

to be radially stable.

5. Zero-temperature bicycles

We found in section 3 that the symmetric bi-ring system had a zero-temperature limit.

In the previous section we investigated a similar zero temperature limit of the doubly

spinning black ring, and showed that it corresponded to the collapse of the ring to an

extremal Myers-Perry black hole. In this section we take a scaling limit to find a similar

collapse zero-temperature limit of the bi-ring solution.

For the symmetric bi-rings the limit of zero temperature is κ1, κ2 → κ3 = 1/2. It is

therefore natural to take the limit κi → κ for some 0 < κ < 1 for the bi-ring solution. This

limit corresponds to collapsing all the finite rods in the rod diagram to zero length.

Here we want to take a limit such that T1, T2 → 0, but the mass, angular momenta,

angular velocities, and horizon areas remain finite. The simplest approach is to first take

the limit κi → κ and then impose the balance conditions, so we also need the r.h.s. of the

balance conditions (2.32)–(2.33) to be finite in the limit. Without loss of generality we pick

κ = κ1, and the desired scaling limit is then obtained by setting

κ2 = κ1 + w1 ǫ , κ3 = κ1 + w2 ǫ , κ4 = κ1 + w3 ǫ , κ5 = κ1 + ǫ , (5.1)

and taking ǫ→ 0. (By exploiting the freedom of rescaling ǫ, we have set the coefficient of

ǫ in κ5 equal to 1.) The ordering of the κi implies

0 < w1 < w2 < w3 < 1 . (5.2)

The balance conditions become

1 =
w3(1 − w1)(w2 − w1)(w3 −w1)

w2
2 (1 − κ1)

, 1 =
w3(1 − w1)(w3 − w1)(w3 − w2)

(1 − w2)2 κ1
. (5.3)

One finds that as ǫ → 0, the temperatures go to zero linearly in ǫ, so the ratio of the

temperatures is finite in the limit,

ξ = lim
ǫ→0

(

T1

T2

)

=
w2

(1 − w2)

√

(1 −w1)(1 − w3)

w1 w3
. (5.4)

This ratio can take any non-negative value, and the limit T1, T2 → 0 can therefore be taken

along any subfamily of solutions with T1 = ξ T2 for any value of ξ.

11We are grateful to R. Emparan for discussions of these properties.
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In the scaling limit we find (superscript “(0)” indicates zero temperature)

M (0) =
3π L2

4G
, J

(0)
φ =

π L3

√
2G

(1 − κ1) , J
(0)
ψ =

π L3

√
2G

κ1 . (5.5)

Note that the relationship between the mass-fixed angular momenta are exactly the same

as for the extremal Myers-Perry black hole. We therefore expect the limit to be a collapse

of the two orthogonal rings to a single extremal Myers-Perry black hole, just as in the

ν → 1, λ → 2 limit of the doubly spinning black ring. Again, the horizon areas will be

discontinuous in this limit, so the corresponding limiting curves in the phase diagram do

not correspond to physical black hole phases.

Even if the zero temperature limit of the bi-ring solution presented in this paper

turns out to simply give the extremal Myers-Perry black hole, we do expect there to exist

zero temperature bi-ring system. These are obtained from a more general bi-ring system,

constructed from two rings which each carry intrinsic angular momenta on both S1 and

S2. For this more general bi-ring the limit of extremality is similar to the λ→ 2
√
ν limit of

each of the doubly spinning black rings of the system. We expect those extremal solutions

to have arbitrarily large angular momenta in both planes. In the next section we discuss

the zero temperature phase diagram.

6. Discussion

In this paper we have analyzed two 4+1-dimensional asymptotically flat black hole vacuum

solutions: one is the doubly spinning black ring, the other is the bicycling black rings, the

bi-rings, consisting of two black rings balanced in orthogonal planes. Both solutions are

constructed by the inverse scattering method. The doubly spinning black ring was found

by Pomeransky and Sen’kov [18], and the bi-ring solution constructed here is new.

We showed in section 4 that the doubly spinning black ring had two limits of zero

temperature. The first of these limits, λ→ 2
√
ν, gives a zero-temperature extremal doubly

rotating black ring. We have proven that good coordinates exist across the horizon, so

indeed the solution is regular everywhere on and outside the horizon. This branch of zero

temperature vacuum solution shares certain features with supersymmetric black rings,

for instance that the inner and outer horizon radii are the same. However, there are

also clear differences, for example that the extremal non-supersymmetric rings have non-

vanishing angular velocities, while Ω = 0 for asymptotically flat supersymmetric black

holes. This difference is significant for studying dragging in the system. Remarkably, Reall

has shown [38] that the entropy of this non-supersymmetric extremal black ring can be

reproduced from a microscopic calculation.

In the other extremal limit (ν → 1,λ→ 2) of the doubly spinning ring, we have shown

that the ring collapses to a zero-temperature Myers-Perry black hole.

Figure 7 shows the known phases of zero temperature single horizon vacuum black

holes: the zero temperature Myers-Perry black hole and the extremal limit of the doubly

spinning black ring. The two phase diagrams, (a) and (b), shown in figure 7 are equivalent.

In figure (a) we use the S1 angular momentum jψ of the ring as the “order parameter”
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1.513

4
1
2
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2

1

1
√

2

MP black hole

doubly spinning

black ring

aH

jφ
11

2
1
4

√
2

1

1
√

2

MP black hole

doubly spinning

black ring

(a) (b)

Figure 7: Phase diagram for zero temperature single horizon black holes. In figure (a) we choose

the S1 angular momentum of the doubly spinning ring on the horizontal axis, in figure (b) it is

the S2 angular momentum. The gray curve is the zero temperature Myers-Perry black hole. Its

entropy is maximized when the system is symmetric, i.e. when jψ = jφ = 1/2. The solid black

curve is the regular zero temperature limit λ→ 2ν1/2 of the doubly spinning black ring. It reaches

maximum area aH = 1/
√

2 for maximal jφ = 1/4 and minimal jψ = 3/4.

on the horizontal axis, and in figure (b) it is the S2 angular momentum. There is no

non-uniqueness in the phase diagram in figure 7, because the two solutions never co-exist

with the same jψ and jφ.

In addition to the single horizon phases shown in figure 7 there will exist other zero

temperature phases for 4+1-dimensional vacuum black holes. These include extremal bi-

rings and extremal saturn solutions. The bi-rings we have constructed in this paper are

a subclass of a more general family of bi-ring solutions. Recall that our bi-rings are es-

sentially superpositions of singly spinning black rings. Obviously one can construct more

general solutions by superimposing the doubly spinning black rings. This would presum-

ably require using a two-step solution generating procedure with the second step involving

a non-diagonal seed, as in [18].

When the S2’s of the generalized bi-ring system carry maximal spin, one expects to

have a zero temperature bi-ring configuration consisting of two doubly spinning extremal

black rings. The general bi-ring system is expected to have a 3-fold continuous non-

uniqueness corresponding to the freedom of distributing the mass and the two angular

momenta between the two black objects while keeping the total asymptotic ADM mass

and angular momenta fixed and imposing balance. Requiring zero temperature for each

ring gives two constraints, and the degeneracy reduces to 1-fold continuous non-uniqueness

for the extremal bi-rings. Thus these solutions will fill up a 2d area of the phase diagram.

And even more non-uniqueness can be expected. Figure 8 shows our expectations for

the full phase diagram of extremal doubly rotating 4+1-dimensional asymptotically flat

vacuum black holes. The curves are the single horizon solutions shown also in figure 7(a).

The gray strip covers the phase diagram from j = 0 to arbitrarily large j. The total area is

bounded by the maximum of the zero temperature Myers-Perry black hole, so that the gray

strip covers j ≥ 0 and 0 < atotal
H <

√
2. The proposal is that there exist zero temperature
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atotal

H

jψ
1.513

4
1
2

√
2

1

1
√

2

MP black hole

doubly spinning

black ring

Figure 8: Expected phase diagram for zero temperature extremal 4+1-dimensional asymptotically

flat vacuum black holes. Extremal bi-ring saturn configurations are anticipated to fully cover the

gray strip with 0 ≤ j <∞ and 0 < atotal <
√

2. In addition, generalized extremal bi-ring solutions

will provide further non-uniqueness in the system.

black hole solutions at any point of the gray strip.

The analysis behind this is similar to the one done for the phase diagram of the non-

extremal singly spinning black holes in [10]. One way to justify that the whole strip in

the phase diagram is covered by solutions is to consider the system of a zero temperature

Myers-Perry black hole surrounded by a zero temperature doubly spinning black ring; this

is the natural zero temperature black saturn solution. One can get arbitrarily close to the

upper bound atotal
H =

√
2 by putting most of the mass in the Myers-Perry black hole, and

tuning its angular momentum to maximize its entropy. The total angular momentum in

one plane of rotation can then be adjusted to be any value 0 ≤ j < ∞ by including a

thin zero temperature black ring around the black hole. The angular momentum in the

orthogonal plane can likewise be adjusted to any value by including a second black ring,

thus combining the bi-rings and black saturn into a black bi-ring saturn.12

We expect that any balanced zero temperature black hole configuration in 4+1-

dimensional vacuum gravity, with asymptotically flat boundary conditions, have total di-

mensionless area bounded by atotal
H =

√
2, which is the maximal area of the zero temperature

Myers-Perry black hole. It is achieved for jψ = jφ. For comparison, it was argued in [10]

that non-extremal black hole configurations exist of any j and any total area atotal
H ≤ 2

√
2.

The inequality is saturated only for the static 4+1-dimensional Schwarzschild solution.

The continuous non-uniqueness in the general non-extremal black hole phase diagram

can be arbitrarily large. A system consisting of n concentric doubly spinning black rings

distributed at will in the two orthogonal planes and surrounding a central doubly spinning

black hole will have 3n-fold continuous non-uniqueness. There are only 3 conserved quan-

tities, the ADM mass and two angular momenta, but these can be distributed continuously

(at least classically) between the n+1 objects (subject to balance conditions). In addition

to this, there can be discrete non-uniqueness. Imposing thermodynamic equilibrium, equal

12Having arbitrarily large angular momentum relies on the space being infinite since the ring needs to be

large. So if the system is put in a box, the phase structure would necessarily change.
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temperatures and equal angular velocities, is expected to fix the radius of the rings, so the

most general equilibrium system would be the bi-ring saturn discussed above.

Higher dimensional gravity has proven to contain an intriguing richness of black hole

solutions. We are privileged to be able to access some of them as exact solutions. Although

these are in some cases rather involved solutions, like black saturn and the bi-rings, it

is possible to extract interesting physics. In general, we cannot expect to be lucky to

have exact solutions for all interesting black hole configurations, and other methods for

constructing solutions are needed. Recently the matched asymptotic expansion method

was used to construct large radius higher dimensional black rings [39]. From these solutions

interesting properties of the phase diagram of black holes were extracted and the remaining

structure of the phase diagram conjectured. Just like black saturn had a place in that

phase diagram, so will doubly spinning black rings, bi-rings and bi-ring saturns in the

generalization to involve spin in both planes of rotation.

In this paper we have examined extremal limits of exact black hole solutions. A com-

mon picture seems to be that if a rod diagram description of the solution can be given, then

the zero temperature extremal limit is a scaling limit in which the finite length rods shrink

to zero size. This characterization may lead to simplifications for constructing extremal

black hole configurations; it would be interesting and useful if it could be implemented

directly in the inverse scattering method.
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A. Horizon metrics

The BZ parameters introduced by the soliton transformations are dimensionful. It is more

natural to rescale them b2L
−1 → b2 and c1L

−1 → c1 to make them dimensionless. The
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rescaled parameters are used in this appendix. It is implicitly understood that c1 and b2
are fixed by (2.27).

The bi-ring solution has two disconnected horizons, each with topology S1 × S2. Here

we give the metric on the event horizons. The ring with event horizon located at ρ = 0

and κ1 ≤ z̄ ≤ κ2 is refered to as ring 1, and the one with event horizon at ρ = 0 and

κ4 ≤ z̄ ≤ κ5 is ring 2.

Black ring 1. The metric on the horizon of ring 1 is

ds2BR1 =
L2 s2BR1 f1(z̄)

(z̄ − κ1)(κ2 − z̄)
dz̄2

+
L2 z̄ (z̄ − κ1)(κ2 − z̄)2

(1 − z̄)(κ4 − z̄) f1(z̄)

[

b−1
2 dψ + c−1

1

κ1 (1 − z̄)

z̄
dφ

]2

+
L2 (z̄ − κ1)

2(κ2 − z̄)(κ4 − z̄)

2 z̄(κ3 − z̄)(κ5 − z̄) f1(z̄)
dφ2 +

L2 (κ3 − z̄)(κ5 − z̄)

2 (1 − z̄) f1(z̄)
dψ2 , (A.1)

where z̄ ∈ [κ1, κ2] and

sBR1 =

√

2κ2 κ3 κ5 (1 − κ1)(κ2 − κ1)(κ4 − κ1)

κ4 (κ3 − κ1)(κ5 − κ1)
, (A.2)

f1(z̄) =
(z̄−κ1)(κ4−z̄)

4 z̄ (1 − z̄)
+c−2

1

κ2
1 (κ2−z̄)(κ3−z̄)(κ5−z̄)

2 z̄ (κ4 − z̄)
+b−2

2

(z̄ − κ1)
2(κ2 − z̄)2

2(1−z̄)(κ3−z̄)(κ5−z̄)
.

The horizon area is A1 = (2π)2 L3 (κ2 − κ1) sBR1.

Black ring 2. The metric on the horizon of ring 2 is

ds2BR2 =
L2 s2BR2 f2(z̄)

(z̄ − κ4)(κ5 − z̄)
dz̄2

+
L2 (1 − z̄)(z̄ − κ4)

2(κ5 − z̄)

4 z̄ (z̄ − κ2) f2(z̄)

[

c1 κ
−1
5 dφ+ b2

(1 − κ5)

(1 − κ1)

z̄

(1 − z̄)
dψ

]2

+
L2 (z̄ − κ1)(z̄ − κ3)

2 z̄ f2(z̄)
dφ2 +

L2 (z̄ − κ2)(z̄ − κ4)(κ5 − z̄)2

2(z̄ − κ1)(z̄ − κ3)(1 − z̄) f2(z̄)
dψ2 , (A.3)

where z̄ ∈ [κ4, κ5] and

sBR2 =

√

2κ5 (1 − κ1)(1 − κ3)(1 − κ4)(κ5 − κ4)(κ5 − κ2)

(1 − κ2)(κ5 − κ1)(κ5 − κ3)
, (A.4)

f2(z̄) =
(z̄ − κ2)(κ5 − z̄)

4 z̄ (1 − z̄)
+ c21

(z̄ − κ4)
2(κ5 − z̄)2

8κ2
5 z̄ (z̄ − κ1)(z̄ − κ3)

+b22
(1 − κ5)

2(z̄ − κ1)(z̄ − κ3)(z̄ − κ4)

8(1 − κ1)2(1 − z̄)(z̄ − κ2)
.

The horizon area is A2 = (2π)2 L3 (κ5 − κ4) sBR2.

Note that the functions f1 and f2 are manifestly positive.
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Figure 9: Phase diagram for the Myers-Perry black hole in five dimensions. The dashed lines show

to Myers-Perry black hole phases for fixed values of j2φ = 1/10, 3/10, 5/10 (right to left). The five

dimensional singly spinning black hole, solid curve, becomes singular in the limit jψ → 1 The gray

curve is the phase of the zero temperature extremal Myers-Perry black holes.

B. Myers-Perry black hole

In 4+1 dimensions, the ADM mass and the two angular momenta in orthogonal planes of

the Myers-Perry black hole [23] are

M =
3π µ

8G
, Jφ =

π µ a1

4G
, Jψ =

π µ a2

4G
. (B.1)

and the horizon area is

AH =
√

2π2 µ
[

µ− a2
1 − a2

2 +
[

(µ− a2
1 − a2

2)
2 − 4 a2

1a
2
2

]1/2
]1/2

(B.2)

Here µ, a1 and a2 are the mass and rotation parameters respectively. They must satisfy

the condition

µ ≥ a2
1 + a2

2 + 2 |a1 a2| (B.3)

to ensure the existence of an event horizon.

The single spinning Myers-Perry black hole shrinks to zero size while reaching its max-

imum angular momentum at j = 1, where the solution becomes singular. This behaviour

changes as the angular momentum in the orthogonal plane is turned on. An extremal non-

zero minimum of the horizon area is then reached at maximum momentum. This is shown

in figure 9. The endpoints of the fixed-jφ curves all have zero temperature. The phase of

extremal Myers-Perry black holes is shown as the gray curve in figure 9. It is obtained by

saturating the bound (B.3), which implies that the inner and outer horizons coincide, so

that the solution is extremal and has zero temperature.
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